US009087000B2

a2 United States Patent 10) Patent No.: US 9,087,000 B2
Robinson et al. (45) Date of Patent: *Jul. 21, 2015
(54) ACCESSING PRIVATE DATA ABOUT THE (52) US.CL
STATE OF A DATA PROCESSING MACHINE CPC GO6F 12/1408 (2013.01); GO6F 21/71
FROM STORAGE THAT IS PUBLICLY (2013.01); GOGF 21/78 (2013.01)
ACCESSIBLE (58) Field of Classification Search
CPC GOG6F 21/86; GOG6F 21/72; GOG6F 21/106
(71) Applicant: Intel Corporation, Santa Clara, CA USPC i 713/189-193
(us) See application file for complete search history.
(72) Inventors: Scott H. Robinson, Portland, OR (US); (56) References Cited
Gustavo P. Espinosa, Portland, OR
(US); Steven M. Bennett, Hillsboro, OR U.S. PATENT DOCUMENTS
Us) 3699532 A 10/1972 Schaffer et al.
. . | 3,996,449 A 12/1976 Attanasio et al.
(73) Assignee: g}tse)l Corporation, Santa Clara, CA (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 CN 1309351 A 8/2001
U.S.C. 154(b) by 0 days. DE 4217444 Al 12/1992
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 13/836,863 Saez, Sergio et al., “A Hardware Scheduler for Complex Real-Time
Systems”, Proceedings of the IEEE International Symposium on
(22) Filed: Mar. 15,2013 Industrial Electronics, XP002190615, Jul. 1999, pp. 43-48.
(Continued)
(65) Prior Publication Data
US 2013/0275772 Al Oct. 17, 2013 Primary Examiner — Fikremariam A Yalew
(74) Attorney, Agent, or Firm — Thomas R. Lane
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 13/413,176, filed on According to an embodiment of the invention, a method for
Mar. 6, 2012, which is a continuation of application operating a data processing m.achl.ne 18 described in Wh19h
No. 10/724.321. filed on Nov. 26. 2003. now Pat. No. data about a state of the machine is written to a location in
8.156.343. Y ’ ’ storage. The location is one that is accessible to software that
T may be written for the machine. The state data as written is
(51) Int.CL encoded. This state data may be recovered from the storage
GO6F 11/30 (2006.01) according to a decoding process. Other embodiments are also
GOGF 12/14 (2006.01) described and claimed.
(Continued) 31 Claims, 6 Drawing Sheets
100
i
120
SOFTWARE
122 124
OPERATING SYSTEM | | ApPLICATION SOFTWARE |
102
oM cpyeren 150
,,,,,,, DATA -~ STORAGE
12 -
LOCAL STATE ~
4 ™~ 192
| REGISTERS | PRIVATE STATE |
] | cpygrep
PROCESSOR DATA
140
INPUT-OUTPUT (li0) DEVICES
PLATFORM HARDWARE

US 9,087,000 B2

Page 2

(51) Int.CL
GOGF 21/71

GO6F 21/78

(56)

4,037,214
4,162,536
4,207,609
4,247,905
4,276,594
4,278,837
4,307,447
4,319,233
4,319,323
4,347,565
4,366,537
4,403,283
4,419,724
4,430,709
4,521,852
4,558,176
4,571,672
4,630,269
4,759,064
4,795,893
4,802,084
4,825,052
4,907,270
4,907,272
4,910,774
4,975,836
5,007,082
5,022,077
5,075,842
5,079,737
5,091,846
5,187,802
5,230,069
5,237,616
5,255,379
5,287,363
5,293,424
5,295,251
5,317,705
5,319,760
5,361,375
5,386,552
5,421,006
5,434,999
5,437,033
5,442,645
5,455,909
5,459,867
5,459,869
5,469,557
5,473,692
5,479,509
5,504,922
5,506,975
5,511,217
5,522,075
5,528,231
5,533,126
5,555,385
5,555,414
5,560,013
5,564,040
5,566,323
5,568,552
5,574,936
5,582,717
5,604,805
5,606,617
5,615,263
5,628,022

(2013.01)
(2013.01)

References Cited

U.S. PATENT DOCUMENTS

B e 3 0 e B B e D B D 0 0 0 B 0 B 0 0 D B B 0 0 D B 0 0 D 0 0 0 0 D B 0 0 D B 0 B 0 B B B 0 0 D 0 0 B D B D 0 0 0 B D

7/1977
7/1979
6/1980
1/1981
6/1981
7/1981
12/1981
3/1982
3/1982
8/1982
12/1982
9/1983
12/1983
2/1984
6/1985
12/1985
2/1986
12/1986
7/1988
1/1989
1/1989
4/1989
3/1990
3/1990
3/1990
12/1990
4/1991
6/1991
12/1991
1/1992
2/1992
2/1993
7/1993
8/1993
10/1993
2/1994
3/1994
3/1994
5/1994
6/1994
11/1994
1/1995
5/1995
7/1995
7/1995
8/1995
10/1995
10/1995
10/1995
11/1995
12/1995
12/1995
4/1996
4/1996
4/1996
5/1996
6/1996
7/1996
9/1996
9/1996
9/1996
10/1996
10/1996
10/1996
11/1996
12/1996
2/1997
2/1997
3/1997
5/1997

Birney et al.
Morley

Luiz et al.
Yoshida et al.
Morley

Best

Provanzano et al.
Matsuoka et al.

Ermolovich et al.

Kaneda et al.
Heller et al.
Myntti et al.
Branigin et al.
Schleupen
Guttag
Arnold et al.
Hatada et al.

Gershenson et al.

Chaum

Ugon

Tkeqaya et al.
Chemin et al.
Hazard
Hazard et al.
Barakat
Hirosawa et al.
Cummins

Bealkowski et al.

Lai

Hackbarth
Sachs et al.
Inoue et al.
Brelsford et al.
Abraham et al.
Melo

Wolf et al.
Holte et al.
Wakui et al.
Gannon et al.
Mason et al.
Ogi

Garney

Jablon et al.
Goire et al.
Inoue et al.
Ugon et al.
Blomgren et al.
Adams et al.
Spilo

Salt et al.
Davis

Ugon

Seki et al.
Onodera
Nakajima et al.
Robinson et al.
Patarin
Hazard
Osisek

Hough et al.
Scalzi et al.
Kubala

Ugon

Davis

Ryba et al.

Di Santo
Brands
Brands
Takahashi
Ueno et al.

5,633,929
5,655,125
5,657,445
5,668,971
5,684,948
5,706,469
5,717,903
5,720,609
5,721,222
5,729,760
5,737,604
5,737,760
5,740,178
5,752,046
5,757,919
5,764,969
5,796,835
5,796,845
5,805,712
5,809,546
5,825,875
5,825,880
5,835,594
5,844,986
5,852,717
5,854,913
5,860,028
5,867,577
5,872,994
5,890,189
5,900,606
5,901,225
5,903,752
5,919,257
5,935,242
5,935,247
5,937,063
5,953,502
5,956,408
5,970,147
5,978,475
5,978,481
5,987,557
5,987,572
6,014,745
6,035,374
6,044,478
6,055,637
6,058,478
6,061,794
6,075,938
6,085,296
6,088,262
6,092,095
6,093,213
6,101,584
6,108,644
6,115,816
6,125,430
6,131,166
6,148,379
6,158,546
6,173,417
6,175,924
6,175,925
6,178,509
6,182,089
6,188,257
6,192,455
6,199,152
6,205,550
6,212,635
6,222,923
6,249,872
6,252,650
6,269,392
6,272,533
6,272,637
6,275,933

B 0 e P e 0 > e 0> 0 e 0 0 0 D B e 0 0 B 0 0 B D B B 0 0 B 0 e D B D 0 0 0 B 0 B D B B 0 0 D B D

5/1997
8/1997
8/1997
9/1997
11/1997
1/1998
2/1998
2/1998
2/1998
3/1998
4/1998
4/1998
4/1998
5/1998
5/1998
6/1998
8/1998
8/1998
9/1998
9/1998
10/1998
10/1998
11/1998
12/1998
12/1998
12/1998
1/1999
2/1999
2/1999
3/1999
5/1999
5/1999
5/1999
7/1999
8/1999
8/1999
8/1999
9/1999
9/1999
10/1999
11/1999
11/1999
11/1999
11/1999
1/2000
3/2000
3/2000
4/2000
5/2000
5/2000
6/2000
7/2000
7/2000
7/2000
7/2000
8/2000
8/2000
9/2000
9/2000
10/2000
11/2000
12/2000
1/2001
1/2001
1/2001
1/2001
1/2001
2/2001
2/2001
3/2001
3/2001
4/2001
4/2001
6/2001
6/2001
7/2001
8/2001
8/2001
8/2001

Kaliski, Jr.
Cloud et al.
Pearce
Neufeld
Johnson et al.
Kobayashi
Bonola
Pfefferle
Bernstein et al.
Poisner

Miller et al.
Grimmer, Jr. et al.
Jacks et al.
Oprescu et al.
Herbert et al.
Kahle et al.
Saada
Serikawa et al.
Davis
Greenstein et al.
Ugon

Sudia et al.
Albrecht et al.
Davis

Bhide et al.
Goetz et al.
Pecore

Patarin
Akiyama et al.
Nozue et al.
Rigal et al.
Ireton et al.
Dingwall et al.
Trostle
Madany et al.
Pai et al.
Davis

Helbig, Sr.
Arnold

Davis
Schneier et al.
Ganesan et al.
Ebrahim
Weidner et al.
Ashe

Panwar et al.
Green

Hudson et al.
Davis

Angelo et al.
Bugnion et al.
Karkhanis et al.
Nasu

Maytal

Favor et al.
Satou et al.
Goldschlag et al.
Davis

Noel et al.
Wong-Insley
Schimmel
Hanson et al.
Merrill
Arnold
Nardone et al.
Nardone et al.
Ganapathy et al.
Buer

Bogin et al.
Kelly et al.
Nardone et al.
Reardon
Schwenk
Wildgrube et al.
Nakamura
Cotichini et al.
Browne

Little et al.
Fine et al.

US 9,087,000 B2

Page 3
(56) References Cited FOREIGN PATENT DOCUMENTS
U.S. PATENT DOCUMENTS EP 0473913 A2 3/1992
EP 0600112 Al 6/1994
6,282,650 Bl 8/2001 Davis EP 0700002 Al 3/1996
6,282,651 Bl 8/2001 Ashe EP 1126356 Al 3/1996
6,282,657 Bl 8/2001 Kaplan et al. EP 0892521 A2 1/1999
6,289,438 B1* 9/2001 Takayanagic..cco.c.... 712/218 EP 0930567 A3 7/1999
6,292,874 Bl 9/2001 Barnett EP 0961193 A2 12/1999
6,301,646 Bl 10/2001 Hostetter EP 0965902 A2 12/1999
6,308,270 Bl 10/2001 Guthery EP 1030237 Al 8/2000
6,314,409 B2 11/2001 Schneck et al. EP 1055989 Al 11/2000
6,321,314 Bl 11/2001 Van Dyke EP 1056014 A1 11/2000
6,327,652 Bl 12/2001 England et al. EP 1085396 Al 3/2001
6,330,670 Bl 12/2001 England et al. EP 1126356 A2 8/2001
6,339,815 Bl 1/2002 Feng et al. EP 1146715 A1 10/2001
6,339,816 Bl 1/2002 Bausch EP 1271277 A2 1/2003
6,357,004 Bl 3/2002 Davis JP 2000076139 A 3/2000
6,363,485 Bl 3/2002 Adams et al. JP 2001-230770 A 8/2001
6,374,286 Bl 4/2002 Gee et al. JP 2001-318787 A 11/2001
6,374,317 Bl 4/2002 Ajanovic et al. P 2002-232417 A 8/2002
6,378,068 Bl 4/2002 Foster et al. JP 2003-051819 A 2/2003
6,378,072 Bl 4/2002 Collins et al. IP 2003-108442 A 4/2003
6,389,537 Bl 5/2002 Davis et al. WO 95/24696 A2 9/1995
6,397,242 Bl 5/2002 Devine et al. WO 97/29567 Al 8/1997
6,397,379 Bl 5/2002 Yates, Jr. et al. WO 98/12620 Al 3/1998
6,412,035 Bl 6/2002 Webber WO 98/34365 Al 8/1998
6,421,702 Bl 7/2002 Gulick WO 98/44402 A1 10/1998
6,435416 Bl 8/2002 Slassi WO 99/05600 a2 2/1999
6,445,797 Bl 9/2002 McGough woO 99/09482 Al 2/1999
6,463,535 Bl 10/2002 Drews WO 99/18511 Al 4/1999
6,463,537 Bl 10/2002 Tello WO 99/57863 Al 11/1999
6,499,123 Bl 12/2002 McFarland et al. woO 99/65579 A1 12/1999
6,505,279 Bl 1/2003 Phillips et al. WO 00/21238 Al 4/2000
6,507,904 Bl 1/2003 Ellison et al. WO 00/62232 A1 10/2000
6,529,909 Bl 3/2003 Bowman-Amuah WO 01/27723 Al 4/2001
6,535,988 Bl 3/2003 Poisner WO 01/27821 A2 4/2001
6,557,104 B2 4/2003 Vuetal. WO 01/63994 A2 8/2001
6,560,627 Bl 5/2003 McDonald et al. WO 01/75564 A2 10/2001
6,609,199 Bl 8/2003 DeTreville woO 01/75565 A2 10/2001
6,615,278 Bl 9/2003 Curtis WO 01/75595 A2 10/2001
6,633,963 Bl 10/2003 Ellison et al. WO 02/086684 A2 10/2001
6,633,981 Bl 10/2003 Davis WO 02/01794 A2 1/2002
6,651,171 Bl 11/2003 England et al. WO 02/17555 A2 2/2002
6,678,825 Bl 1/2004 Ellison et al. WO 02/060121 Al 8/2002
6,684,326 Bl 1/2004 Cromer et al. WO 03/058412 A2 7/2003
6,779,114 Bl 8/2004 Chow et al. WO 2005/055024 Al 6/2005
6,986,028 B2 1/2006 Ehlig et al.
6986052 BL* 12006 Mital oo 713/190 OTHER PUBLICATIONS
6,996,725 B2 2/2006 Ma et al.
7,076,667 BL* 7/2006 Gamaetal.ccocoonn.... 713/193 Sherwood, Timothy, et al., “Patchable Instruction ROM Architec-
7,149,878 B1 12/2006 Jensen et al. ture”, Department of Computer Science and Engineering, University
;,ggg,? }? g% 1}‘;588; {Ilelakil of California. San DieaoLa Jolla CA Nov. 2001.
1243, almslcy IA-32 Intel® Architecture Software Developer’s Manual, vol. 3:
2001/0018736 Al* 8/2001 Hashimoto et al. 713/1 : : :
2001/0021969 Al 9/2001 Burger et al. tsh};itjn}ll f;?g‘;mm1ng Guide, Intel Corporation—2003 (pp. 13-1
2001/0027511 Al 10/2001 Wakabayashi et al. Offi 5 e . . L
5001/0027527 Al 10/2001 Khidekel ef al. ce Action Rece.lved for Chinese Patent Appllca.tlon No.
2001/0037450 Al 112001 Metlitski ef al 12004800135019.4, mailed on Jun. 8, 2007, 3 pages of English Trans-
: ' ation only.
%88%;882;3;2 2} éggg% EZ;I;:SE Ztt :11: Office Actio_n Received for Japanese Patent Application No. 2011-
2002/0147916 Al 10/2002 Strongin et al. 000154, mailed on _Jan. 17, 201_2, 3 pages of Japanese Office Action
2002/0166061 Al 11/2002 Falik et al. and 1 page of English Translation. . o
2002/0169717 Al 11/2002 Challener Office Action Received for Chinese Patent Application No.
2003/0018892 Al 1/2003 Tello 200480035019 .4, mailed on Nov. 1, 2012, 5 pages of Office Action
2003/0055928 Al 3/2003 Machida and 6 pages of English Translation.
2003/0061385 Al 3/2003 Gonze Office Action Received for Chinese Patent Application No.
2003/0074548 Al 4/2003 Cromer et al. 200480035019 .4, mailed on Mar. 21, 2013, 3 pages of Chinese Office
2003/0097551 Al 5/2003 Fuller, Il et al. Action and 4 pages of English Translation.
2003/0115453 Al 6/2003 Grawrock Office Action Received for Chinese Patent Application No.
2003/0126442 Al 7/2003 Glew et al. 200480035019 .4, mailed on Jan. 8, 2010, 6 pages of Chinese Office
2003/0126453 Al 7/2003 Glew et al. Action and 8 pages of English Translation.
2003/0159056 Al 8/2003 Cromer et al. Office Action Received for Chinese Patent Application No.
2003/0163718 Al 8/2003 Johnson et al. 2004800350194, mailed on May 8, 2009, 11 pages of Chinese Office
2003/0188179 Al 10/2003 Challener et al. Action and 5 pages of English Translation.
2003/0196085 Al 10/2003 Lampson et al. Office Action Received for German Patent Application No. 11
2004/0042498 Al* 3/2004 Furunessetal. ... 370/503 2004002259.2, mailed on Feb. 9, 2007, 2 pages of German Office
2004/0117539 Al 6/2004 Bennett et al. Action and 2 pages of English Translation.

US 9,087,000 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Office Action Received for German Patent Application No. 11 2004
002 259.2, mailed on Sep. 8, 2008, 3 pages of German Office Action
and 3 pages of English Translation.

Office Action Received for German Patent Application No. 11 2004
002 259.2, mailed on Jul. 20, 2009, 3 pages of German Office Action
and 3 pages of English Translation.

Office Action Received for Korean Patent Application No. 10-2006-
7010203, mailed on Apr. 10, 2008, 3 pages of Korean Office Action
and 2 pages of English Translation.

Office Action Received for Korean Patent Application No. 10-2006-
7010203, mailed on May 11, 2009, 4 pages of Korean Office Action
and 3 pages of English Translation.

Office Action Received for Korean Patent Application No. 10-2006-
7010203, mailed on Oct. 8, 2007, 3 pages of Korean Office Action
and 2 pages of English Translation.

Office Action Received for Korean Patent Application No. 10-2006-
7010203, mailed on Dec. 19, 2008, 2 pages of Korean Office Action
and 2 pages of English Translation.

Office Action Received for Japenese Patent Application No. 2006-
541379, mailed on Sep. 29, 2009, 6 pages of Japenese Office Action
and 6 pages of English Translation.

International Preliminary Report on Patentability received for PCT
Patent Application No. PCT/US2004/038734, mailed on Jun. 8,
2006, 7 pages.

Office Action Received for German Patent Application No. 11 2004
002 259.2, mailed on Nov. 30, 2010, 1 page of German Office Action.
European Patent Office, International Search Report and Written
Opinion for International Application No. PCT/US2004/038734, 11
pages, May 25, 2005.

Coulouris, George et al., “Distributed Systems, Concepts and
Designs”, 2nd Edition, 1994, pp. 422-424.

Crawford, John, “Architecture of the Intel 80386”, Proceedings of the
IEEE International Conference on Computer Design: VLSI in Com-
puters and Processors (ICCD ’86), Oct. 6, 1986, pp. 155-160.
Fabry, RS., “Capability-Based Addressing”, Fabry RS, “Capability-
Based Addressino” Communications of the ACM vol. 17 No. 7, Jul.
1974, pp. 403-412.

Frieder, Gideon, “The Architecture and Operational Characteristics
ofthe VMX Host Machine”, The Architecture and Operational Char-
acteristics of the VMX Host Machine IEEE, 1982, pp. 9-16.

HP Mobile Security Overview, “HP Mobile Security Overview”,
Sep. 2002, 1-10.

IBM Corporation, “IBM ThinkPad T30 Notebooks”, IBM Product
Specification located at www-1.ibm.com/services/files/cisco t30
spec sheet 070202 .pdf last visited Jun. 23, 2004, (Jul. 2, 2002), pp.
1-6.

Intel Corporation, “IA-64 System Abstraction Layer Specification”,
Intel Product Soecification Order No. 245359-001, Jan. 2000, pp.
1-112.

Intel Corporation, “Intel 82802AB/82802AC Firmware Hub
(FWH)”, Intel Product Datasheet Document No. 290658-004, Nov.
2000, pp. 1-6 and 17-28.

Intel Corporation, “IntellA-64 Architecture Software Developer’s
Manual”, vol. 2: IA-64 System Architecture Order No. 245318-001,
Jan. 2000, 1, ii, 5.1-5.3, 11.1-11.8, 11.23-11.26.

Menezes, Alfred J. et al., “Handbook of Applied Cryptography”,
CRC Press Series on Discrete Mathematices and its Applications
Boca Raton, FL, XP002165287 ISBN 0849385237, Oct. 1996, pp.
403-405, 506-515 and 570.

Nanba, S. , et al., “VM/4: ACOS-4 Virtual Machine Architecture”,
VM/4: ACOS 4 Virtual Machine Architecture IEEE, 1985, pp. 171-
178.

RSA Security “Hardware Authenticators”, pp. 1-2.

RSA Security, “RSA SecurID Authenticators”, pp. 1-2.

Schneier, Bruce, “Applied Cryptography: Protocols, Algorithm, and
Source Code in C”, Wiley John & Sons Inc. XP002939871, ISBN
0471117099, Oct. 1995, pp. 47-52.

Schneier, Bruce, “Applied Cryptography: Protocols, Algorithm, and
Source Code in C”, Wiley John & Sons Inc. XP002939871, ISBN
0471117099, Oct. 1995, 47-52 Code in C, Wiley John & Sons Inc.
XP002138607, ISBN 0471117099, Oct. 1995, pp. 56-65.

Schneier, Bruce, “Applied Cryptography: Protocols, Algorithms, and
Source Code C”, Wiley John & Sons Inc. XP0021111449; ISBN
0471117099, Oct. 1995, pp. 169-187.

Schneier, Bruce, “Applied Cryptography: Protocols, Algorithms, and
Source Code in C”, 2nd Edition’ Wiley John & Sons Inc.
XP002251738; ISBN 0471128457, Nov. 1995, pp. 28-33, 176-177,
216-217,461-473 and 518-522.

Berg, Cliff, “How Do I Create a Signed Applet?”, Dr. Dobb’s Jour-
nal., Aug. 1997, pp. 1-9.

Brands, Stefan, “Restrictive Blinding of Secret-Key Certificates”,
Springer-Verlag XP002201306, 1995, Chapter 3.

Chien, Andrew A., et al., “Safe and Protected Execution for the
Morph/AMRM Reconfigurable Processor”, 7th Annual IEEE Sym-
posium, FCCM ’99.

Proceedings, XP010359180, ISBN 0-7695-0375-6, Los Alamitos,
CA, Apr. 21, 1999, pp. 209-221.

Compaq Computer Corporation, etal., “Trusted Computing Platform
Alliance (TCPA) Main Specification Version 1.1a”, Dec. 2001, pp.
1-321.

Davida, George I., et al., “Defending Systems Against Viruses
through Cryptographic Authentication”, Proceedings of the Sympo-
sium on Security and Privacy. IEEE Compo Soc. Press, ISBN
0-8186-1939-2, May 1989.

Goldberg, Robert P., “Survey of Virtual Machine Research”, Com-
puter Maaazine, Jun. 1974, pp. 34-35.

Gong, Li et al., “Going Behond the Sandbox: An Overview of the
New Security Architecture in the Java Development Kit 1.2”, Pro-
ceedings of the USENIX Symposium on Internet Technoloaies and
SYstems Monterey, CA, Dec. 1997.

Gum, P. H., “System/370 Extended Architecture: Facilities for Vir-
tual Machines”, IBM J. Research Development, vol. 27, No. 6, Nov.
1983, 530-544.

Heinrich, Joe, “MIPS R4000 Microprocessor User’s Manual, Second
Edition”, Chaoter 4 “Memory Management” Jun. 11, 1993, pp.
61-97.

IBM, “Information Display Technique for a Terminate Stay Resident
Program IBM,” Information Display Technique for a Terminate Stay
Resident Program 7A Dec. 1, 1991, pp. 156-158.

Intel, “Intel386 DX Microprocessor 32-Bit CHMOS Microprocessor
With Inteorated Memory Management”, 1995, pp. 5-56.

Karger, Paul A. et al., “A VMM Security Kernal for the VAX Archi-
tecture”, Proceedings of the Symposium on Research in Security and
Privacy XP010020182 ISBN 0-8186-2060-9 Boxborouah MA, May
7, 1990, pp. 2-19.

Kashiwagi, Kazuhiko , et al., “Design and Implementation of
Dynamically Reconstructing System Software”, Software Engineer-
ing Conference.Proceedings 1996 Asia-Pacific Seoul, South Korea
Dec. 4-7, 1996, Los Alamitos, CA USA, IEEE Comput. Soc, US,
ISBN.

Lawton, Kevin, et al., “Running Multiple Operating Systems Con-
currently on an IA32 PC Using Virtualization Techniques™, htto:/
Iwww.olex86.ora/research/oaoer.txt Nov. 29, 1999, pp. 1-31.

Luke, Jahn , et al., “Replacement Strategy for Aging Avionics Com-
puters”, IEEE AES Systems Magazine XP002190614, Mar. 1999.
Menezes, Oorschot, “Handbook of Applied Cryptography”, CRC
Press LLC, USA XP002201307, 1997, p. 475.

Motorola, “M68040 User’s Manual”, (1993),1-1 to 8-32 Franzis
Verlag GMBH, Munchen, DE, vol. 40, No. 16, XPO00259620, Aug.
6, 1991, pp. 100-103.

Robin, John S. et al., “Analysis of the Pentium’s Ability to Support a
Secure Virtual Machine Monitor”, Proceedings of the 9th USENIX
Security Symposium, XP002247347 Denver Colorado, Aug. 14,
2000, pp. 1-17.

Rosenblum, M., “Virtual Platform: A Virtual Machine Monitor for
Commodity PC”, Proceedinas ofthe 11th Hotchios Conference, Aug.
17, 1999, pp. 185-196.

US 9,087,000 B2

Page 5
(56) References Cited Office Action Received for Chinese Patent Application No.
200480035019A, mailed on Dec. 4, 2013, 3 pages of Chinese Office
OTHER PUBLICATIONS Action, and 5 pages of English Translation.

Office Action Received for Japanese Patent Application No. 2006-
541379, mailed on Sep. 29, 2009, 6 pages of Japanese Office Action

Office Action Received for Chinese Patent Application No. and 6 pages of English Translation.

200480035019 .4, mailed on Jul. 12,2013, 10 pages of Chinese Office
Action, and 10 pages of English Translation. * cited by examiner

U.S. Patent Jul. 21, 2015 Sheet 1 of 6 US 9,087,000 B2
/100
120
SOFTWARE
122 ~124
OPERATING SYSTEM APPLICATION SOFTWARE
~102
110 130
4™ CIPHERED -
,,,,,,, DATA ~_ STORAGE
112 .
LOCAL STATE
114 N 132
PRIVATE STATE
REGISTERS REGION
-~ | CIPHERED _}—"""
PROCESSOR DATA
~140
INPUT-OUTPUT (l/O) DEVICES
PLATFORM HARDWARE

FIG. 1

U.S. Patent Jul. 21, 2015 Sheet 2 of 6 US 9,087,000 B2

200

&

(START ’

l 202

DETERMINE STORAGE ADDRESS FROM
WHICH THE LOAD IS REQUESTED

204
LOADING
FROM ENCODED PRIVATE-STATE
REGION?

YES NO

210
OBFUSCATE
ADDRESS VALUE v 250
LOAD DATA VALUE FROM
220 UNMODIFIED STORAGE
ADDRESS, WITHOUT
LOAD ENCODED DATA DATA DECODE
VALUE FROM
OBFUSCATED ADDRESS
l 230
DECODE DATA
VALUE
END

FIG. 2

U.S. Patent Jul. 21, 2015 Sheet 3 of 6

US 9,087,000 B2

300

s

302

DETERMINE STORAGE ADDRESS AND
DATA TO BE STORED

304

STORING TO
ENCODED PRIVATE-STATE
REGION?

YES

NO

~310
ENCODE DATA
VALUE v 850
STORE UNENCODED
320 DATA VALUE TO
UNMODIFIED STORAGE
OBFUSCATE ADDRESS
ADDRESS VALUE
l 330
STORE ENCODED DATA
VALUE TO OBFUSCATED
ADDRESS IN STORAGE

END

FIG. 3

US 9,087,000 B2

Sheet 4 of 6

Jul. 21, 2015

U.S. Patent

W3LSAS
(Q3Y3HID SANTVA VLYA ‘GIXIN
$36STA0Y TOISAHd) V1¥0 G300ONT Hov) 8
20/ — — a] NOI9TY ILVLS
AHONIW - | | v 030008
90y — NOIOTY 31V1S ¢ N 138dHo €
A 3LYANd 03000N3 S v 5 0/~ N0SSIO0Nd oty
8ly .
_ S 907~ Hovoaws T
xﬁm mv_xm . O |71 3LvAid 4300030
e (43a¥0 Ss3waav-—" o
HOLX JOLEX NV S3NTVA bor- .
LLOLX 00LLX 11000001 LOLEX v1va n_mw_O._.mmm_v
0LOX LLOIX 00L00LL0 LLLIX 200930 .
LOX 0L0LX 0LLO0KOL LOOKX
000X 100LX LLOLOLOL 0L0LX 00000000 LILIX
JLOOX 000VX | 0000LLLO 000LX 00000000 OLLIX ™
wwxw mxwm 001L0L0L QLIOX 00000000 1OMIX
R -
ONOX LOx | OO0 00000000 400K
167 OLLOX LLOOX
00} 0100X viva ¥advd _00000000___ Q100X
T i —==} 000000001000 ">
< Q00X LO0OX__=>1}1040010 LNdNI LNVASNOD = 00000000™~0000X~~
0000X = 0000X ONV 04010000 G338
VOISAHd WII90T | N KekeexeX | gpp Viva ~ SSIMaav
dVIN SSTHAQY AYOWIW | TVINONATOd HLIM 04y vIvarHaay a3¥3HdInaa
31V1S JLVAIMd USIN 118-8 WOH4 Y1va
0677 [NO ¥3HdID I¥INIDIA

U.S. Patent Jul. 21, 2015 Sheet 5 of 6 US 9,087,000 B2

508

LINEAR TO

PHYSICAL

ADDRESS
TRANSLATION

504 (TLB)
ADDRESS | Hi LinAddr 2

TTAL
Ael) Lo LinAddr ~514
5())9
ADDRESS
PHYSICAL
EN%ﬂPT'NG l ADDRESS
I 410 Y ’/ 108
| v Vo
SPSE%IAL usop
IGNAL
ENCODING/ — 7 CACHE [eg» MEMORY
DECODING
516 Y 524
DATA
BECODED DECODING/

PRIVATE -
ENCODING
STATE T NI T

— DECODED __ENCODED
920— CONTENT 910— CONTENT

FIG.5

US 9,087,000 B2

Sheet 6 of 6

Jul. 21, 2015

U.S. Patent

049

_
318193y
/A0HNOS MSYIN
TVNOILdO

]
9
N

AA:
—
909 »09
O v oy & | 0 W 4 & .
304N0S 1S9
$SIMaqY TO4LNOD
NN TVINONATOd
O W &y & 0y Ha % &

US 9,087,000 B2

1
ACCESSING PRIVATE DATA ABOUT THE
STATE OF A DATA PROCESSING MACHINE
FROM STORAGE THAT IS PUBLICLY
ACCESSIBLE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/413,176, filed Mar. 6, 2012, entitled
“ACCESSING PRIVATE DATA ABOUT THE STATE OF A
DATA PROCESSING MACHINE FROM STORAGE THAT
IS PUBLICLY ACCESSIBLE” which is a continuation of
U.S. patent application Ser. No. 10/724,321, filed Nov. 26,
2003, entitled “ACCESSING PRIVATE DATA ABOUT THE
STATE OF A DATA PROCESSING MACHINE FROM
STORAGE THAT IS PUBLICLY ACCESSIBLE”, which
issued on Apr. 10, 2012, as U.S. Pat. No. 8,156,343, the
content of which is hereby incorporated by reference.

BACKGROUND

Some of the embodiments of the invention relate to how
processors read and write state data from and to a storage of
a computer system. Other embodiments are also described.

Due to various design considerations, some processors
may write private-state data to regions in publicly-accessible
storage. The format, semantics and location of this private-
state may vary between design implementations. In literature
describing the processor, such storage regions are often
marked as “RESERVED” indicating that their contents
should not be read or modified because they contain private-
state. Unfortunately, because this data is written to publicly-
accessible storage, software applications, operating systems
or external agents (e.g., input-output devices) may access the
storage region and use the private-state stored therein inap-
propriately. Access and use of this private-state by such non-
approved entities may lead to erroneous and/or undesirable
effects for processor and platform manufacturers and end
users.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of
example and not by way of limitation in the figures of the
accompanying drawings in which like references indicate
similar elements. It should be noted that references to “an”
embodiment of the invention in this disclosure are not neces-
sarily to the same embodiment, and they mean at least one.

FIG. 1 shows a block diagram of a computer system which
may obfuscate/encode the public storage of private-state data,
according to an embodiment of the invention.

FIG. 2 illustrates a flowchart depicting a method for read-
ing an encoded private-state data value from a private-state
storage region according to an embodiment of the invention.

FIG. 3 illustrates a flowchart depicting a method for storing
an encoded private-state data value to a private-state storage
region according to an embodiment of the invention.

FIG. 4 shows a block diagram of a computer system in
which the processor is designed to obfuscate/encode its pri-
vate-state data as written to public storage, according to an
embodiment of the invention.

FIG. 5 illustrates example functional components that may
beused to implement the obfuscation/encoding of the private-
state data, according to an embodiment of the invention.

20

40

45

50

60

2

FIG. 6 depicts a more detailed logic diagram of part of an
example address obfuscation/encoding unit, according to an
embodiment of the invention.

DETAILED DESCRIPTION

Processor state, as written to a storage, such as memory,
during operation of a processor may include two types of
information or data. One type is referred to herein as archi-
tectural data, while the other is called implementation-spe-
cific data (also herein referred to as “private data” or “private-
state data”™).

Architectural data is state information which is common to
all processors of a given class as designated by the manufac-
turer, i.e. having substantially the same high-level interface
between hardware and software. This interface is called the
instruction set architecture (ISA). The use of the same ISA on
a variety of processor implementations facilitates the ability
of software written expressly for one implementation to run
on later implementations unmodified.

An ISA defines the state available to software running on
the processor, its format and semantics, and available opera-
tion interfaces (e.g., instructions, events). Part of this ISA
specification describes how the processor may use one or
more regions in the machine’s storage (e.g., memory) to
facilitate its operations. These storage regions may be acces-
sible to software and other devices in the data processing
machine in which the processor resides (e.g., input-output
devices, etc.). The processor may use these storage regions to
store both architectural and private-state data.

For example, consider processors that have the ISA of the
Intel® Pentium® processor as manufactured by Intel Corpo-
ration, herein referred to as the IA-32 ISA. The processor may
utilize regions in storage during certain operations. For
example, when an [A-32 ISA processor enters system man-
agement mode, it stores various values to a region of storage
called the system management (SMM) state save area. A
variety of architectural data is stored (e.g., various machine
registers such as ESI, EBP, etc.) in locations and formats
which are specified in documentation for the ISA. Addition-
ally, a variety of private data is stored to the system manage-
ment state save area. In documentation for the ISA, these
private-state areas are labeled “Reserved”; the contents, for-
mat and semantics of this private data are not specified in the
ISA documentation. These “reserved” regions of storage are
referred to herein as “private-state regions”.

Different processors may be designed to have different
private-state data, also herein called “private data”. This may
be done, for example, to improve performance or reduce
manufacturing cost. For example, new internal registers may
be added, some of the old ones may be used differently, and
the format or location of their content that is to be written to
storage may be changed for greater efficiency. As a result, the
private data for these more recent processors will be different,
in content, format, semantics or location, from those of the
older versions.

Difficulty can arise when private-state data is stored in
publicly-accessible areas such as main memory or other stor-
age. Here it is possible for software such as, for example, the
basic input-output system (BIOS), operating systems, virtual
machine manager or hypervisor, device drivers, or applica-
tions and hardware such as I/O devices or other external
agents to access (i.e., read and/or write) this private-state data.
Use of this private-state data by such entities may lead to
erroneous and/or undesirable effects for processor and plat-
form manufacturers and end users. For example, if an appli-
cation depends on particular private-state data available in

US 9,087,000 B2

3

one processor implementation, it might function incorrectly
when the application is run on a different processor imple-
mentation which implements the private-state differently (or
does not implement it at all). Software that depends on private
data may also fail due to internal processor-to-memory coher-
ency behaviors/policies that change from implementation to
implementation. Software reliance on private-state data may
complicate and/or hobble implementation alternatives avail-
ableto the processor manufacturer with regard to private-state
usage. Therefore, processor manufacturers often document
such private data (and its storage in memory regions) as
RESERVED, indicating that it is subject to change in future
implementations.

The above-mentioned ability to run old software on a
newer machine assumes that the old software did not improp-
erly access a machine’s private data (which can change with
newer versions of the machine). However, it has been found
that software developers are writing application and operat-
ing system programs that do the opposite, namely accessing
and relying upon private data, as it is stored in, for example,
main memory. This creates a problem because older software
may not run properly on a newer machine, even though the
newer machine has the same architectural data as the older
machine and can still “understand” older mechanisms for
accessing stored state data (e.g., load and store instructions as
defined in the ISA). That is because some or all of the private
data may have changed in the newer machine, causing soft-
ware to function incorrectly. In addition, the manufacturer
may be reluctant to add improvements to future versions of'its
processor because doing so would risk incompatibility prob-
lems with older software.

According to an embodiment of the invention, a data pro-
cessing machine and a method of operation are described
which may discourage a software developer from writing
software that relies upon private-state data (e.g., a certain
value, its location, its semantics or its format) that is stored in
apublicly-accessible region of storage. This may allow future
versions of the machine to exhibit different behavior with
respect to private data that may be needed as the machine’s
internal hardware design evolves, yet still exhibit the same
ISA needed to run older software.

Some embodiments of the invention may encourage use of
architected interfaces to data stored as private-state data. For
example, instructions may be provided to access data that
may be stored as private-state data by specifying the identity
of the data to be accessed, rather than the location of the data
within the private-state data region. This allows implementa-
tion freedom in how the data is stored (e.g., within the private-
state region) while providing an architectural mechanism to
access the data. For example, suppose that a data element
stored in the system management state save area of the [A-32
ISA (as described above) is the value of the CS segment base
address. The storage location of this data element within the
state save area is not detailed in the ISA specification. Instead,
an instruction may be provided by the ISA which indirectly
addresses the data. The data element may be encoded and
stored in the state save area in any manner that a processor
implementation desires (or it may not be stored in the private-
state area in memory at all, and instead retained in, for
example, a special register or location within the processor).

The invention permits private-state data to be encoded in a
manner that thwarts speedy software decode of the data as
compared with the prescribed, architected interfaces.
Embodiments of the invention may vary the encoding com-
plexity depending on the target processor and platform. Once
the target processor is known, one skilled in the art can choose
an embodiment of the invention that ensures that software-

10

15

20

25

30

40

45

50

55

60

65

4

based methods to decode the chosen encoding take longer
than using the prescribed interfaces (e.g., instructions). For
example, non-prescribed software methods may be able to
decode certain private-state data in 400 clocks (e.g., using
certain instructions and algorithms) while architecturally pre-
scribed instructions and methods would work in a fraction of
that time. An embodiment of the invention lies in the use of
certain metrics to measure the cost of private state decode,
including, for example, the metrics of time (speed) and power
consumption.

Herein the term “encoding” includes concepts such as
encrypting, ciphering, formatting, or the assignment or inter-
pretation of specific bit patterns. Encodings by embodiments
of this invention are said herein to “obfuscate” the private
data.

Referring now to FIG. 1, a block diagram of a computer
system is shown. Software 120 is running on platform hard-
ware 102. The platform hardware 102 can be a personal
computer (PC), mainframe, handheld device, portable com-
puter, set-top box, or any other computing system. The plat-
form hardware 102 includes a processor 110, storage 130 and
may include one or more input-output (I/O) devices 140.

Processor 110 can be any type of processor capable of
executing software, such as a microprocessor, digital signal
processor, microcontroller, or the like. The processor 110
may include microcode, programmable logic or hard-coded
logic for performing the execution of certain method embodi-
ments of the present invention. Though FIG. 1 shows only one
such processor 110, there may be one or more processors in
the system.

The one or more I/O devices 140 may be, for example
network interface cards, communication ports, video control-
lers, disk controllers, system buses and controllers (e.g., PCI,
ISA, AGP) or devices integrated into the platform chipset
logic or processor (e.g., real-time clocks, programmable tim-
ers, performance counters). Some or all ofthe /O devices 140
may have direct memory access (DMA) capability, allowing
them to read and/or write the storage 130 independent of, or
under the control of, the processor 110 or software 120.

Storage 130 can be a hard disk, a floppy disk, random-
access memory (RAM), cache memory, read-only memory
(ROM), flash memory, static random access memory
(SRAM), any combination of the above devices, or any other
type of storage medium accessible by processor 110. Storage
130 may store instructions and/or data for performing the
execution of method embodiments of the present invention.
The storage 130 may be a publicly accessible area of a register
file of the processor, or it may be an area outside of the
processor such as main memory.

Data about a state of the machine 112, such as the contents
of certain internal registers 114, is written to a private-state
region 132 in storage 130, where the state data as written is
“encoded” or “obfuscated.” Thus, although the location
where the state data is written is public in that it may be
accessed by /O devices 140 or software 120 (e.g., operating
system 122, application software 124) running on the plat-
form hardware 102, the encoding makes it difficult for the
state data to be reverse engineered (i.e., decoded) in a timely
manner. When the state data is to be recovered from the
storage 130, a specified decode process, e.g. a processor-
initiated decode process defined by the manufacturer of the
processor, is applied. Control over the decode process may be
linked to specific processor functions, such as specific
instructions and control signals, as discussed below. Non-
prescribed methods (alternate software instructions and algo-
rithms) for accessing the state data would not activate these
controls and accordingly may be more costly.

US 9,087,000 B2

5

The recovered state data may then be placed into the local
state 112, which may or may not be accessible to software 120
or I/O devices 140. The local state 112 may be, for example,
a region in an internal cache or registers which are not avail-
able for ungoverned access through the instruction set archi-
tecture (ISA). In some cases local state is not accessible by
software or other external agents (e.g., [/O devices). In some
cases, some or all of the local state is accessible to software or
other external agents. In other cases local state may be indi-
rectly accessible through specific interfaces (e.g., instruc-
tions). Because it is internal to the processor and not in “pub-
lic” storage, the processor can strictly dictate access to the
local state.

Although the state data as written to the publicly accessible
area of the storage 130 is in an encoded form, a manufacturer-
defined instruction that may be part of the ISA for the pro-
cessor may be used by software to recover the data from the
storage 130. The encoding should be strong enough so as to
discourage software developers from circumventing such an
instruction, when seeking to access the state data. An example
of'the internal logic needed for reading or recovering the state
data from storage, using a micro-operation or hardware con-
trol signal, will be described below with reference to FIG. 5.

In one embodiment, the encoding process used need only
be strong enough to cause an author of software 120 to apply,
in writing the software, a technique that may be prescribed by
a manufacturer of the processor for accessing the state data
from memory, rather than circumventing the technique. In
other cases, the encoding may be stronger if the manufacturer
intends to make it even more difficult for the software devel-
oper to access and rely upon the state data (including a certain
value, its location, its semantics or its format) that is in
memory.

Control signals used to control the encoding and decoding
of the private-state may be coupled with or accessed by, for
example, hardware state machines, processor instructions
(also known as macro instructions), operational modes (e.g.,
PAL modes) or mode bits or operational groups of instruc-
tions, microcode or microcode operations (uops), and hard-
ware control signals or events.

Various types of encoding processes may be used. The data
written to the private-state region of storage may be changed
prior to storage. This type of encoding process is called data
encoding. Alternatively, the addresses used to access private-
state in private-state regions may be changed. This type
encoding process is called address obfuscation and the trans-
formation from the original address to the obfuscated address
is referred to as address mapping. Data encoding and address
obfuscation are described below.

Encoding processes may be either static or dynamic. Static
encodings do not change over time as a machine is running
(and performing the encoding processes). (Static encodings
may change or be reconfigured during the processor initial-
ization/reset or boot phase, but not afterwards during running
operation.) A process that generates static encodings is called
static obfuscation. Alternatively, the encoding process may
produce encoding results which change over time while the
processor is running. These processes are referred to herein as
dynamic obfuscation.

For example, a storage format of the contents of a given
element of private-state, as written in the storage 130, may
change while the machine is executing. This is referred to
herein as dynamic obfuscation. For example, the format may
change between big-endian and little-endian according to a
random or pseudo-random sequence (which the processor
generates and tracks), whenever the state data needs to be
written to storage; this change may only affect the memory

10

15

20

25

30

35

40

45

50

55

60

65

6

region(s) to which the private data is read and written. Again,
the intent here is to make it difficult to quickly reverse engi-
neer and decode the state data from a region of storage that is
publicly accessible in storage 130.

In an embodiment, when private-state data is to be written
to storage, it is written to a region of storage (e.g., main
memory) with contiguous addresses. In other embodiments
the private data region is non-contiguous, consisting of more
than one distinct regions of storage. There is no requirement
that the encoding fully populate the private-state region; i.e.,
some bits or bytes may remain unused. Some freedom in
designing the encoding and/or obfuscation functions may be
obtained by changing the private-state region size, by, for
example, making it bigger than strictly required to store the
private data. (For example, this would permit, as described
later, larger MISR (multi-input shift register) polynomials to
be used.)

In an embodiment of the invention, a multi-byte (e.g.,
32-bit “long” integer) value of state data is split into several
parts which are then stored in non-contiguous locations,
rather than all in sequence. Thus, a 4-byte value may be split
into four 1-byte values that are stored in non-contiguous
locations within a private-state region. The locations at which
the four 1-byte values are stored may change dynamically and
in a random way while the machine is operating. Of course,
the embodiment should be able to locate and decode such
data. Note that the ISA may impose certain requirements
regarding atomicity of the accesses in cases where single data
values are stored or loaded using multiple memory accesses.

In an embodiment of the invention, the address bits used to
access storage are encoded. This encoding of address bits
may change address bit ordering (or groups of address bits).
An example of this might be switching from little-endian to
big-endian formats within a given memory region. Other
address mixing mappings are possible, some involving more
elaborate transformations.

Another type of address encoding maps a set of K unique
addresses to another set of K unique addresses; that is, math-
ematically the mapping is bijective (both injective (one-to-
one) and surjective (onto)). Here, the upper address bits may
remain unchanged, while the lower-order address bits are
modified. In such cases it is possible to construct mappings
that map a given memory range back onto itself. That is, the
base address offset of the memory range is the same and the
memory region size is the same. This is an attractive solution
because only the data within the memory range is “obfus-
cated”. That is, only the address bits within the range are
mixed. FIG. 4 and FIG. 6 provide examples of one such
mapping and associated address-mixing mechanism.

Address obfuscation mechanisms may be easier to use
when the private-state regions have sizes or base addresses
that are powers of the underlying N-ary logic. Most current
processors use binary logic, hence private-state regions with
sizes or base addresses that are powers of 2 are preferable.
(Herein, binary logic and arithmetic are discussed, but N-ary
logic and arithmetic could be used, where appropriate, and
are assumed in the general case.) Filters and other mecha-
nisms may be used to manage private-state regions with sizes
or base addresses that are not powers of the N-ary logic. Such
address bit manipulations can coexist with various memory
organizations and virtual memory techniques (e.g., paging,
segmentation, etc).

Address obfuscation mechanisms may change the layout
of data within the storage, and serve to mix up the data, but
sometimes only at granularities of the storage. In most current
processors, main memory is byte addressable, hence the loca-
tion of individual bytes of a data element may be rearranged

US 9,087,000 B2

7

within the private-state region, but the data bits within indi-
vidual bytes are not changed by address obfuscation (though
they may be altered by data encoding mechanisms).

In these address-mapping embodiments, the original
address mappings may be extracted through some decode
process. This extraction is the application of the inverse func-
tion of the address mapping function. The choice of mapping
function may be made in light of this requirement; not all
address mapping functions are reversible.

An embodiment of the invention encodes the data bits
written to storage. These data encodings may reshape data
stored within the private-state region without necessarily
being constrained by addressability constraints such as the
size of addressable storage. Segments of data may be
swapped with other segments of data. For example, two
nibbles (i.e., 4-bit segments within a byte) can be swapped
within each byte. Data encodings may be bit-wise exclusive-
OR’ed with a constant XOR mask. Data may also be bit-wise
exclusive-OR’ed with the output of a multi-input feedback
shift register (MISR). Data encodings may be made using a
cryptographic function. In these embodiments, the original
data can be extracted through some decode process. That
decode process should ensure that it is faster than decode
methods available to software running on the platform (e.g.,
use of ISA-defined load and store operations, mathematical
operations, etc.). The tables 470 and 480 of FIG. 4, for
example, illustrates the use of a Vigenere-like cipher applied
to data (bytes) in a given 16-byte range of memory addresses.

Some of the embodiments listed above may be imple-
mented with static mappings. That is, they do not change
during the time the processor or platform is running. Suitable
mappings may be set at design time, during manufacture, post
manufacture, or early in system operation (e.g., during sys-
tem boot, at system power on, at processor reset). Different
processors may or may not be configured with the same static
mappings. If mappings are not bound until the system is
operational (e.g., at system boot), it is possible for a new
mapping to be chosen at each processor boot. In an embodi-
ment, different control sets (e.g., operating modes, groups of
instructions) can each use a different mapping configuration.
Within a control set, the mapping remains constant. However,
between instruction groups or modes, the mappings may (or
may not) be distinct.

Other embodiments may be implemented with dynamic
mappings that change while the processor is operating. In an
embodiment, mapping configurations can only change if
there are no outstanding encoded data currently stored in any
private-state regions in storage. This embodiment may use a
counter that is incremented when encoded data is written to a
private-state region of the storage, making it active. The
counter is decremented when the private-state region is no
longer considered active. When the counter is zero, the map-
ping configuration may be changed. In an embodiment, the
mapping configuration is stored for each private-state region
in a mapping descriptor. The mapping descriptor may be
stored in a known, un-encoded location within the private-
state region itself or maintained separately by a tracking
structure such as a queue or look-up table, which may reside
inside or outside the processor. In an embodiment, different
mappings for each private-state region are possible.

FIG. 2 illustrates process 200 for reading an encoded pri-
vate-state data value from a private-state storage region
according to an embodiment of the invention. The process
may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as run on a general
purpose computer system or a dedicated machine), or a com-

20

25

30

40

45

50

55

60

8

bination of both. In one embodiment, processing logic is
implemented in processor 110 of FIG. 1.

Referring to FIG. 2, process 200 begins with processing
logic determining an address for the data element (processing
block 202). Next, processing logic determines if the data
element is stored in encoded form in a private-state region of
storage (processing block 204).

An embodiment of the invention uses a microcode-gener-
ated or hardware-generated control signal which indicates to
the processing logic that the data element requested requires
decoding. Absence of this signal causes the NO path to block
250 to be taken.

If the data element is not to be decoded, then processing
logic proceeds to processing block 250, where it loads the
data element from storage at the address determined in pro-
cessing block 202. The process may then terminate. The data
loaded is not decoded; that is, no address or data decoding is
performed. Note that the data read on this path may be ordi-
nary (i.e., is not private-state data) or it may be private-state
data in its encoded form (but accessed in a non-prescribed
manner).

If, however, the data element is to be decoded, then pro-
cessing logic next determines the address at which it is stored
(the address may be obfuscated) based on the address deter-
mined in processing block 202 (processing block 210). Pro-
cessing logic next loads the encoded data element from stor-
age at the address determined in processing block 210
(processing block 220). Processing logic next decodes the
data element loaded from the private-state region of storage in
processing step 220 (processing block 230). The decoded
value is a result of process 200. The process may then termi-
nate. Often this decoded state is placed in a private state cache
or the private, local state of the processor.

FIG. 3 illustrates process 300 for storing a private-state
data value to a private-state region of storage according to an
embodiment of the invention. The process may be performed
by processing logic that may comprise hardware (e.g., cir-
cuitry, dedicated logic, programmable logic, microcode,
etc.), software (such as run on a general purpose computer
system or a dedicated machine), or a combination of both. In
an embodiment, processing logic is implemented in proces-
sor 110 of FIG. 1.

Referring to FIG. 3, process 300 begins with processing
logic determining a data value and a storage address of a data
element (processing block 302). Next, processing logic deter-
mines if the data element to be stored is a private-state ele-
ment to be stored in encoded form to a private-state region of
storage (processing block 304).

An embodiment of the invention uses a microcode-gener-
ated or hardware-generated control signal to signal the pro-
cessing logic that the data element being written requires
encoding. Absence of this signal causes the NO path to block
350 to be taken.

If the data element is not to be stored in encoded form in a
private-state region, then processing logic proceeds to pro-
cessing block 350, where it stores the data element in unen-
coded (unmodified) form to storage at the address determined
in processing block 302. The process may then terminate. The
data written is not encoded.

If, however, the data element is to be stored in encoded
form in a private-state region, then processing logic next
encodes the data element (processing block 310) and deter-
mines an obfuscated address at which to store the data ele-
ment (processing block 320). Processing logic then stores the
now encoded data element to storage at the address deter-
mined in processing block 320 (processing block 330). The
process may then terminate.

US 9,087,000 B2

9

Note that the processing performed in processing block
310 and processing block 320 may be performed in the
reverse order, i.e. obfuscation of the address value prior to
encoding of the data. Some embodiments will perform one
and not both of these processing blocks. Some embodiments
may perform the processing blocks in parallel.

Turning now to FIG. 4, a computer system 402 is depicted
in block diagram form. This system 402 has a processor 404
that is designed to support the methodology described above
for obfuscating the private-state data in storage. The proces-
sor 404 has a standard cache 410 and a private cache 416,
where the latter is not accessible to software executing on the
system 402 and is used to store the private-state data in an
un-encoded (non-obfuscated) form. In this embodiment, a
system chipset 406 is also provided to allow the processor 404
to communicate with the memory 408. The chipset 406 may
include a memory controller (not shown) as well as other
logic needed to interface with peripheral devices of a com-
puter (also not shown). In some embodiments, the function-
ality of the chipset 406, or a functional subset, may be imple-
mented in the processor 404.

In FIG. 4, the memory 408 is shown as storing, in a publicly
accessible region 418, the encoded private-state data of the
processor 404. This is an example where a cipher has been
applied to the values of the internal processor state of the
processor 404, so that the actual values cannot be easily
recovered or reverse engineered by simply monitoring and
reading the memory 408.

As described above, the obfuscation of data stored in the
encoded private-state region 418 may be achieved in a variety
of ways. FIG. 4 shows an example of one such mechanism
whereby both the data values are encoded and the data layout
is encoded/obfuscated. First data values in table 470 are
encoded using a Vigenere cipher yielding the data values
shown in table 480 (described below). Then a special map-
ping from logical address values of the private-state data to
physical address values is applied where the mapping results
illustrated in table 490. The physical addresses dictate where
the private-state data is actually stored in memory. The physi-
cal addresses are thus said to result from an encoding of the
logical addresses.

The table 470 in FIG. 4 entitled “deciphered addr/data™ has
a list of example logical addresses and their associated pri-
vate-state data values which are stored in un-encoded form in
the cache 416. Here all zero data values were chosen to
demonstrate the resulting encoding. Note that an ‘X’ repre-
sents the unencoded upper bits of the virtual and physical
address of the state data. The table 490 entitled “Private State
Memory Address Map” shows an example of the mapping
between unencoded and encoded addresses. Here, only the
low-order 4 bits are encoded.

FIG. 6. illustrates an embodiment of a programmable (pa-
rameterized) address mapping function that may be used in
the system of FIG. 4. In FIG. 6, one would load the polyno-
mial control register 604 with P.sub.0=1, Psub.1=1,
Psub.2=0, Psub.3=0 to implement primitive polynomial
x.sup.4+x.sup.1+x.sup.0 and load the Optional mask register
610 with all zeroes. This logic is an adaptation of the equa-
tions governing generic w-bit wide MISR’s and can be used
to construct various address encoding combinational logic.
The parameterized MISR state equations are:

S{t+1)=S;_(O++(PS,,_ (D)), 1=i=w-1

Solt+ D=Ig+(Po S,y ()

Here the operator “+” represents modulo 2 addition (XOR)

and “” represents modulo 2 multiplication (AND). Parameter

10

15

20

25

30

35

40

45

50

55

60

65

10

“t” represents time (clock ticks), S, the state of the 1’th flip-
flop, I, the i’th input vector bit, and P, the i’th polynomial
coefficient. The P, coefficient is implicitly 1. To achieve the
address mixing embodiment of FIG. 4, replace all S,(t) with
the corresponding address A, values and S,(t+1) with output
O,. Other embodiments are possible.

Primitive polynomials of order w are useful in that they can
generate a “maximal sequence”; that is, they can generate all
w-bit wide binary combinations or patterns. Primitive poly-
nomials of up to degree 300 (300 bits wide) and even higher
orders may be used.

To illustrate the above function, using F1G. 4, to access data
at logical address offset 0001 (as shown in entry 471), the
physical memory at location 0010 is accessed (as entry 491
shows). The un-encoded content value (see entry 471) asso-
ciated with this address in this case happens to be all zeros.
However, when stored in encoded form as shown in entry 481,
a non-zero bit string (i.e., 11110101) appears in the public
region 418 of the memory 408. (This encoding cipher is
described in more detail later.) Although limited bit widths
are shown for convenience, the technique may be applied to
wider or parallel, bit-sliced data.

Storage and recovery of the encoded private-state data in
memory 408, as shown in FIG. 4, may be implemented using
the logic blocks shown in FIG. 5. For this example, a special
micro-operation (e.g., control signal) has been defined for the
processor to use when storing or recovering private-state data
from storage.

An address generation unit (AGU) 504 receives a special
micro-operation and, in this embodiment, computes a logical
address having a high component and a low component. In an
embodiment, the logical address is a virtual address. In
another embodiment, as shown in FIG. 5, the logical address
is a linear address as found in Intel® Pentium® processors. In
yet another embodiment, the logical address is a physical
address and no translation of the high address bits need be
done. In FIG. 5, the high component of the address is fed to a
linear-to-physical address translation block (also referred to
as a translation look-aside buffer or TLB) 508 which trans-
lates this high component of the linear address (that may be a
virtual page number) into part of a physical address 509.

An address obfuscation/encoding unit 514 is to receive in
this embodiment the low portion of the linear address value
that is associated with the given private-state data of the
processor. In response, the address obfuscation unit 514
translates this low component of the linear address to provide
another portion of the physical address 509. The value of this
portion of the physical address is a mixed or encoded version
of the linear address, as described above with reference to
FIG. 1 and FIG. 4, for example.

In an embodiment, the special micro-operation or uop sig-
nal (control signal) determines if the address encoding unit
514 is to encode the low-order address bits. If the control
signal is not asserted, the low-order address bits can pass
through un-encoded, or bypassing the unit 514. Even when
the encoding control signal (or signals) are asserted, some
address bits may pass though un-encoded. This might occur,
for example, if only a subset of the address bits need encoding
when the private-state memory region is smaller than the
address space size addressable by the low-order bits. Other
embodiments exist where address encoding occurs after lin-
ear-to-physical address translation and therefore can handle
encodings of address spaces that are larger than a virtual-
memory page. An advantage of the embodiment shown in
FIG. 5 is that the linear-to-physical translation occurs in par-
allel with the encoding operation instead of serially, so it is

US 9,087,000 B2

11

potentially faster. Also, encodings are often only necessary
for private-state memory regions that are smaller than the
virtual-memory page size.

The high component of the physical address (generated by
the TLB 508) and the low component of the physical address
(generated by the address obfuscation/encoding unit 514)
when concatenated, produce physical address 509, which
points to the actual location in the memory 408 where the
given state data is stored. The physical address 509 is, in this
embodiment, first applied to the cache 410 and if this results
in a miss, the contents of the location are fetched from the
memory 408 or stored to memory 408 (depending on whether
the operation is a load or store). Other arrangements of the
memory hierarchy are possible.

Note that in this embodiment, a region that has been des-
ignated in the memory 408 for storage of the private-state data
may occupy only a portion of a page, and may be aligned to a
virtual memory page boundary. In that case, only the page-
offset portion of the linear address (that is the low portion of
the linear address), is passed through the address obfuscation/
encoding unit 514, to produce the encoded physical page
offset. Other implementations are possible. In addition, the
address obfuscation/encoding unit 514 may contain range-
selection logic, so that only addresses within specific regions
of memory are encoded. With this logic, the storage region
may not be required to be aligned to a virtual memory page
boundary or, as discussed earlier, a power of 2 in size. Inter-
nally, the address obfuscation/encoding unit 514 may be
implemented using microcode, software, lookup tables,
fixed-function logic, programmable logic or any combination
of'these techniques (see F1G. 6 for a key element of one such
implementation).

Still referring to FIG. 5, note that in this embodiment the
processor’s standard cache 410 is used to store the encoded or
obfuscated private-state data. When there is encoded content
510 to be delivered from either the cache 410 or memory 408,
it may be decoded using a data decoding/encoding unit 524.
The decoded content value 520 is then, in this embodiment,
stored in the private-state area 516 of the processor. As before,
cache 410 and memory 408 are publicly accessible (e.g., by
the operating system), whereas the private-state area is only
accessible to the inner workings of the processor. The data
decoding/encoding unit 524 may also be used in reverse,
when writing the private-state data in encoded form to stor-
age. In such an embodiment, the unit 524 would encode a
content value that may originate from the private-state area
516.

In some embodiments, special instructions may be pro-
vided in the processor’s ISA for accessing some or all of the
private-state data. These instructions when executed may
result in the transfer of un-encoded data from the private-state
area 516 (see FIG. 5), or they may dispatch special micro-
operation or hardware control signals to access the region 418
in memory 408 (see FIG. 4) in which the private-state data is
stored in encoded form. While other instructions of the ISA
(e.g., normal load and store instructions) may be able to
access the public regions of the memory 408 and/or the cache
410, the results of such read accesses will be private-state data
values that have either their address values obfuscated and/or
the data content encoded. Accordingly, without special hard-
ware assistance, it may not be possible to reverse engineer or
otherwise recover the private-state data in a timely fashion.

Although the above-described mechanism has logic com-
ponents that are implemented inside a processor device, other
organizations are possible in which some or all of the encod-
ing logic is implemented in the system chipset, for example.

10

15

20

25

30

35

40

45

50

55

60

65

12

In addition, special bus cycles may be defined for accessing
the private-state region 418 of the memory 408 (FIG. 4).

Turning now to FIG. 6, a more detailed design of an
example, programmable 4-bit, address bit obfuscation (en-
coding) mechanism is shown. This design may be used in the
address obfuscation/encoding unit 514 of FIG. 5 and to gen-
erate the logical-to-physical address mapping (for the low-
order bits) in FIG. 4.

The logic diagram of FIG. 6 is an embodiment of a com-
binational logic portion of a 4-bit wide, multi-input linear
feedback shift register (MISR) with a fourth-order polyno-
mial using the method described above. This combinational
logic is fed by the polynomial control register 604, the
optional mask register 610, and the input address source 606.
Note that this logic is not an entire MISR, but does leverage
the mapping properties of an MISR.

In FIG. 6, the polynomial control register 604 is loaded
with the binary coefficients of a polynomial. For example, to
configure the circuit of FIG. 6 to implement the logical-to-
physical address mapping illustrated in FIG. 4 that maps with
primitive polynomial x*+x*+x°, one would load the polyno-
mial control register 604 with binary coefficients P,=1, P,=1,
P,=0, P;=0. The address bit vector 0000 will map to 0000, if
the optional mask register 610 is set to 0000. The input
address source 606 represents the 4-bit logical address to be
encoded. The optional mask source 610 (e.g., control register)
permits different mappings to be constructed.

As described above, the mask register 610 and polynomial
control register 604 may be changed dynamically at run time.
For example, the values that are loaded may be derived from
apseudo-random data source during power-on reset process-
ing. This may thwart attempts to access private-state data or to
circumvent any prescribed access methods (such as a special
ISA instructions described above). FIG. 6 is an embodiment
which is reasonably efficient and permits programmability
with binary coefficient and mask values and a modest amount
of hardware with relatively few gate delays. Other logic
designs are possible for implementing the address obfusca-
tion/encoding unit 514. Additional logic or content address-
able memory (CAMs) may be used to further restrict the
range of addresses modified by the address bit encoding
mechanism. In addition, more complex logic may be
designed for the encoding and decoding processes to, for
example, strengthen the encoding (if needed).

The encoding of the content values of the private-state data
may be accomplished in a way similar to those described
above for address obfuscation. One approach is to XOR-in
the logical address offsets (for aligned regions of private-state
data), or XOR-in some constant seed value, with the contents
of a given element of private-state to be encoded. A more
sophisticated encoding mechanism may be used on a stream
of private-state data values. A variant of a feedback shift
register technique (linear, non-linear, multi-input, etc.) may
be used with an initial seed. The initial seed is defined to be
the initial state loaded into the feedback shift register. For
each data value in succession, the shift register may be
advanced and its contents bit-wise XOR-ed to the contents of
the internal register. This is referred to as a Vigenre cipher and
anexample ofthis is shown in tables 470,480 of F1G. 4 above,
where each unencoded content (data) value in 470 is zero
(e.g., entry 471) but does not appear as such when stored in
encoded form in 480 (e.g., entry 481) in memory 408. With
this cipher, the shift register is used to generate a pseudo-
random sequence of bit-wise XOR masks. In this case as each
pseudo-random byte-wide mask is produced by an MISR (see
480), it is bit-wise XOR’ed with the next data value in the
address sequence. Only the polynomial and initial shift reg-

US 9,087,000 B2

13

ister seed value is needed to regenerate the exact same
sequence again. In an embodiment, the encode and/or decode
unit’s configuration information (e.g., polynomial and initial
seed) could be stored along with the encoded state region in
memory 408. To decode the private-state, the configuration
information (e.g., polynomial and initial seed) would be
retrieved (and possibly decoded using another fixed encoding
technique), and then used. As long as each mask in the
sequence is applied to the corresponding data in the same
order (e.g., one mask applied per addressable data unit), the
bit-wise XOR masking will produce (decode) the original
data. As discussed previously, the polynomial and initial
MISR seed values may be changed (e.g., boot time, run time,
etc) using various methods or change constraints. To recover
the original data, the decode method(s) appropriate for the
encoding method(s) originally used should be applied, i.e. to
undo the encoding. Vigenre ciphers are just one example of a
private-state data value encoding mechanism, which is effi-
cient and permits programmability with simple binary coef-
ficient lists, seeds, etc., and a modest amount of hardware
with only a few gate delays. Other embodiments are also
possible.

In an embodiment of the invention, the processor may
make use of the private-state region 132 in storage (see FIG.
1) at transitions between modes of operations of the proces-
sor. For example, the processor may access the private-state
region when entering system management mode (SMM) as
described above. These transitions between modes of opera-
tion are referred to herein as mode switches. Mode switches
include, for example, movement between normal and system
management mode, between a virtual machine (VM) and a
virtual machine monitor (VMM) in a virtual machine system,
between a user-level operating system process and the oper-
ating system kernel, etc.

In an embodiment of the invention, the processor may
make use of the private-state region 132 in storage at any time
after designation of the private-state region. For example, in a
virtual machine system, the VMM may allocate a region in
storage for the processor’s use during virtual machine opera-
tion. The VMM may indicate the location of the private-state
region to the processor (e.g., through executing an instruction
defined in the ISA). After the processor receives this indica-
tion, it may be free to utilize the private-state region as it sees
fit. For example, the processor may access the private-state
region during transitions between a VM and the VMM (i.e., at
mode switch points). Additionally, the processor may access
the region during operation of a VM or the VMM. For
example, the processor may access control information from
the private-state region or the processor may store temporary
values in the private-state region.

The ISA may also provide a mechanism by which the
VMM may designate that a private-state region should no
longer be used (e.g., by executing an instruction). In other
embodiments, private-state regions may be designated using
other methods. For example, a private-state region may be
designated by writing to model-specific registers (MSRs),
executing instructions in the ISA, writing to locations in
storage, etc.

Although the above examples may describe embodiments
of the present invention in the context of execution units and
logic circuits, other embodiments of the present invention can
be accomplished by way of software. For example, in some
embodiments, the present invention may be provided as a
computer program product or software which may include a
machine or computer-readable medium having stored
thereon instructions which may be used to program a com-
puter (or other electronic devices) to perform a process

5

10

15

20

25

30

35

40

45

50

55

60

14

according to an embodiment of the invention. In other
embodiments, operations might be performed by specific
hardware components that contain microcode, hardwired
logic, or by any combination of programmed computer com-
ponents and custom hardware components.

Thus, a machine-readable medium may include any
mechanism for storing or transmitting information in a form
readable by a machine (e.g., a computer), but is not limited to,
floppy diskettes, optical disks, Compact Disc, Read-Only
Memory (CD-ROMs), and magneto-optical disks, Read-
Only Memory (ROMs), Random Access Memory (RAM),
Erasable Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM), magnetic or optical cards, flash memory, a trans-
mission over the Internet, electrical, optical, acoustical or
other forms of propagated signals (e.g., carrier waves, infra-
red signals, digital signals, etc.) or the like.

Further, a design may go through various stages, from
creation to simulation to fabrication. Data representing a
design may represent the design in a number of manners.
First, as is useful in simulations, the hardware may be repre-
sented using a hardware description language or another
functional description language. Additionally, a circuit level
model with logic and/or transistor gates may be produced at
some stages of the design process. Furthermore, most
designs, at some stage, reach a level of data representing the
physical placement of various devices in the hardware model.
In the case where conventional semiconductor fabrication
techniques are used, data representing a hardware model may
be the data specifying the presence or absence of various
features on different mask layers for masks used to produce
the integrated circuit. In any representation of the design, the
data may be stored in any form of a machine-readable
medium. An optical or electrical wave modulated or other-
wise generated to transmit such information, a memory, or a
magnetic or optical storage such as a disc may be the machine
readable medium. Any of these mediums may “carry” or
“indicate” the design or software information. When an elec-
trical carrier wave indicating or carrying the code or design is
transmitted, to the extent that copying, buffering, or re-trans-
mission of the electrical signal is performed, a new copy is
made. Thus, a communication provider or a network provider
may make copies of an article (a carrier wave) embodying
techniques of the present invention.

In the foregoing specification, the invention has been
described with reference to various techniques for accessing
data about the state of a data processing machine from pub-
licly accessible storage. It will, however, be appreciated that
various modifications and changes may be made thereto with-
out departing from the broader spirit and scope of embodi-
ments of the invention, as set forth in the appended claims.
The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method for operating a data processing machine, com-
prising:

applying by a processor an encoding process to private-

state data of said processor, where the private-state data
captures a state of the processor;

writing, to a location in storage, said encoded private-state

data, the location being one that is accessible to software
written for the processor; and

reading by the software the encoded private-state data from

the storage using an instruction that causes the processor
to decode the encoded private-state data and store the
decoded private-state data in a private-state area acces-
sible to software only by using the instruction; wherein

US 9,087,000 B2

15

the private-state data refers to one of content of an inter-
nal register of the processor that is not explicitly identi-
fied in an instruction manual for the processor, and con-
tent of an internal register of the processor that is
explicitly identified in the instruction manual but is
stored in one of a format and a location that is not
explicitly identified in the instruction manual.

2. The method of claim 1 wherein the encoding process is
to thwart an attempt at recovering the private-state data from
the storage by a second process different from the decoding
process.

3. The method of claim 1 wherein the encoding process is
configured to cause an author of the software to apply, in
writing said software, a technique prescribed by a manufac-
turer of the processor for accessing the private-state data from
storage rather than circumventing said technique.

4. The method of claim 1 wherein the private-state data is
written to one of a publicly accessible location in a register
file of the processor, cache, and memory.

5. The method of claim 1 wherein during the encoding
process the location of written contents of a given internal
register of the processor changes arbitrarily at least once,
while repeating the applying and the writing.

6. The method of claim 1 wherein during the encoding
process a storage format of written contents of a given inter-
nal register of the processor changes arbitrarily at least once
between big-endian and little-endian, while repeating the
applying and the writing.

7. The method of claim 1 wherein during the encoding
process a cipher is applied to the contents of a given internal
register to produce an encoded value which is then written to
the location in storage.

8. The method of claim 1 further comprising storing recov-
ered state data in a private storage of the processor.

9. An apparatus for operating a data processing machine,
comprising:

a data processing machine having a private internal state,
the internal state to change as the data processing
machine executes instructions provided to itself as part
of'a program, wherein the data processing machine is to
encode data about the internal state and write the
encoded state data to a location in a storage unit, wherein
the location is readable by an instruction set architecture
of'the data processing machine using an instruction that
causes the data processing machine to decode the
encoded state data and store the decoded state data in a
private state area accessible to software only by using the
instruction;

wherein the data about the internal state refers to one of
content of an internal register of the data processing
machine that is not explicitly identified in an instruction
manual for the data processing machine, and content of
an internal register of the data processing machine that is
explicitly identified in the instruction manual but is
stored in one of a format and a location that is not
explicitly identified in the instruction manual.

10. The apparatus of claim 9 wherein the data processing
machine is a processor that has a special read micro-opera-
tion, to be used when the processor is to recover said state data
from the storage unit.

11. The apparatus of claim 10 wherein the processor fur-
ther includes an internal cache and is to also write the encoded
state data to a public location in the cache.

12. The apparatus of claim 10 wherein the processor is to
recover the state data and write the recovered state data to a
private location in the processor.

10

15

20

25

30

40

45

55

60

16

13. The apparatus of claim 10 wherein the processor is to
recover the state data and configure itself with the recovered
state data in preparation for resuming execution of a sus-
pended task.

14. The apparatus of claim 10 wherein the processor com-
prises a manufacturer-defined instruction that, when executed
by the processor, recovers the state data from the storage unit.

15. The apparatus of claim 9 wherein the data processing
machine is a processor for which a special micro-operation is
defined for accessing the encoded state data from the storage
unit, and wherein the processor further comprises an address
obfuscation unit to receive an address value associated with
given state data of the processor, the address value having
been derived from a dispatch of the special micro-operation,
the obfuscation unit to provide an encoded, physical address
value that points to the actual location in the storage unit
where the given state data is stored.

16. The apparatus of claim 9 wherein the data processing
machine is a processor for which a hardware control signal is
defined for accessing the encoded data from the storage unit,
and wherein the processor further comprises an internal
cache, a data conversion unit to receive a data value from the
internal cache as a result of a cache hit derived from the
hardware control signal, the conversion unit to decode the
data value into actual state data of the processor.

17. A computer system comprising:

a processor; and

a main memory communicatively coupled to the processor

and having a public region designated to store the pro-
cessor’s private-state data in encoded form, the instruc-
tion set architecture of the processor including an
instruction to decode and read said the private-state data
from the public region;

wherein the private-state data refers to one of content of an

internal register of the processor that is not explicitly
identified in an instruction manual for the processor, and
content of an internal register of the processor that is
explicitly identified in the instruction manual but is
stored in one of a format and a location that is not
explicitly identified in the instruction manual.

18. The system of claim 17 wherein the processor encodes
the private-state data prior to storing it to the public region.

19. The system of claim 17 wherein the processor decodes
a value read from the public region prior to using it.

20. The system of claim 17 wherein the processor further
includes an internal storage unit in which a public region is
designated to store a copy of said private-state data in encoded
form.

21. The system of claim 20 wherein the internal storage
unit is one of a cache and a register file.

22. The system of claim 20 wherein a private region is
designated in the internal storage unit to store said private-
state data in unencoded form.

23. The system of claim 20 further comprising a system
chipset communicatively coupling the processor to the main
memory.

24. A method for operating a data processing machine,
comprising:

encoding private state data about a state of the data pro-

cessing machine; and writing, to a location in storage,
the encoded private state data, the location being read-
able to software that is running on the data processing
machine using an instruction that causes the data pro-
cessing machine to decode the encoded private state data
and store the decoded private state data in a private state
area accessible to software only by using the instruction;

US 9,087,000 B2

17

wherein the private state data refers to one of content of an
internal register of the data processing machine that is
not explicitly identified in an instruction manual for the
data processing machine, and content of an internal reg-
ister of the data processing machine that is explicitly
identified in the instruction manual but is stored in a
format or location that is not explicitly identified in the
instruction manual.

25. The method of claim 24, wherein the encoding com-
prises ciphering a value of the private state data to yield said
encoded private state data.

26. The method of claim 24, wherein the private state data
about the state of the data processing machine is one of a
register value and a value from the storage.

27. The method of claim 24, wherein the encoding com-
prises address encoding to obfuscate an address value of the
private state data.

28. The method of claim 24 further comprising recovering
the private state data from the storage according to a decoding
process.

29. The method of claim 28 wherein the recovering com-
prises reading a plurality of values from memory; and com-
bining the read plurality of values to form a single unencoded
value of said private state data.

30. The method of claim 28 wherein the recovering com-
prises reading a plurality values from one or more discontigu-
ous locations of memory; combining the read plurality values
to form a single value; and decoding the single value to form
an unencoded value of said private state data.

31. The method of claim 28 further comprising storing the
recovered private state data in a private storage of the data
processing machine.

10

15

20

25

30

18

